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ABSTRACT
We generalize Ornstein-Uhlenbeck process to include non-normal innovations. This
model captures the stylized facts of financial markets as it preserves jumps
in the volatility process. We study the asymptotic behavior of some estima-
tors of the drift parameter in the Gamma-Ornstein-Uhlenbeck, Inverse-Gaussian-
Ornstein-Uhlenbeck, Modified-Tempered-Stable-Ornstein-Uhlenbeck volatility pro-
cesses based on discrete equally spaced observations of the price process. The esti-
mators are explicit. We study robustness and efficiency of the estimators.
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1. Introduction

Recently processes with jumps and long memory have received attention in finance,
engineering and physics. Levy driven processes of Ornstein-Uhlenbeck type have been
extensively studied over the last few years and widely used in finance, see Barndorff-
Neilsen and Shephard [2, 3]. Levy processes are processes with stationary indepen-
dent increments. Levy Ornstein-Uhlenbeck (LOU) process generalizes the Ornstein-
Uhlenbeck process to include jumps.

The Levy Ornstein-Uhlenbeck (LOU) process, is an extension of Ornstein-Uhlenbeck
process with Levy process driving term. In finance, it is useful as a generalization of
Vasicek model, as one-factor short-term interest rate model which could take into
account the jump of the interest rate. It also generalizes stochastic volatility model
where the volatility has jumps.

Jump processes are of two types: Finite activity processes and infinite activity pro-
cesses. Finite activity processes have finite number of jumps in a finite time interval,
e.g., a Poisson process and infinite activity processes have infinite number of jumps
in a finite time interval, e.g., gamma process, inverse Gaussian process and tempered
stable process. We will consider only infinite activity process in this paper.
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It is well known that the suitably parametrized autoregresive (AR) process with
Gaussian error has the continuous limit the Vasicek model. Wolfe [56] studied contin-
uous analogue of the stochastic difference equation of AR type with Levy type inno-
vations whose limit is a Levy driven OU Process. Gourieroux and Jasiak [36] studied
autoregressive gamma (ARG) process and showed that its continuous time limit is the
Cox-Ingersoll-Ross (CIR) model. Thus the stationary ARG process is a discretized
version of the CIR process. Gourieroux and Jasiak [36] studied pseudo-maximum like-
lihood estimation in autoregressive gamma (ARG) process. This process can also be
used for application in series of squared returns and intertrade durations for high-
frequency data, i.e., it is a stochastic duration model. ARG model also fits a series of
volumes per trade, which is an alternative proxy for liquidity. This is different from
gamma autoregressive process (GAR) process studied in Sim [54] and Gaver and Lewis
[34] where just the noise of the linear autoregressive process is Gamma distributed. For
intertrade durations, the most popular model is autoregressive conditional duration
(ACD) model introduced by Engle and Russell [30].

Based on direct observations from the model, Bishwal [7] studied estimation by
estimating function for discretely sampled diffusions. Bishwal [9] studied M-estimation
for discretely sampled diffusions. Bishwal [11] studied estimation by sequential Monte
Carlo method for stochastic volatility models. Bishwal [12] studied sufficiency problem
in Vasicek model. Bishwal [18] studied nonparametric estimation in Heath-Jarrow-
Morton forward interest model driven by Levy process using local time. Bishwal [19]
studied higher order approximate maximum likelihood estimation for CKLS model.

In order to do pricing of options for these semi-observed models, the unknown
parameters in the hidden model must be estimated from the asset price data. Bishwal
[13] studied quasi-maximum likelihood estimation in fractional Levy driven Ornstein-
Uhlenbeck stochastic volatility model.

In this paper we study method of moments estimators for Ornstein-Uhlenbeck
stochastic volatility model driven by Levy processes. In section 2, we review op-
tion pricing in stochastic interest rate and stochastic volatility models, and intro-
duce a hybrid model with 15 parameters. In section 3, we study estimation for
the Inverse-Gaussian-Ornstein-Uhlenbeck stochastic volatility model. In Section 4,
Gamma-Ornstein-Uhlenbeck stochastic volatility model. In section 5, we study esti-
mation in Modified-Tempered-Stable-Ornstein-Uhlenbeck stochastic volatility model.
In section 6, we make concluding remarks.

2. Option Pricing in Stochastic Interest Rate and Stochastic Volatility
Models

First we consider the stock price modeling. Let (Ω,F , {Ft}t≥0, P ) be a stochastic basis
on which is defined the following process {St, t ≥ 0} where {Wt} be a standard Wiener
process with the filtration {Ft}t≥0.

For the Black-Scholes model for stock price

dSt = µStdt+ σStdWt, t ≥ 0,

using Itô formula to logSt, one obtains the solution

St = S0 exp

((
µ− 1

2
σ2

)
t+ σWt

)

2
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which is known as geometric Brownian motion. The parameter µ is known as the mean
rate of return and σ as the volatility.

Call option (buyer’s option) at time t is the expected discounted (at the risk free
interest rate r pay-off

Ct = E[e−r(T−t)max(ST −K, 0)|Ft]

where K is the strike price of the option and T is the time of maturity of the option.
Put option (seller’s option) at time t is the expected discounted (at the risk free

interest rate r pay-off

Pt = E[e−r(T−t)max(K − ST , 0)|Ft]

where K is the strike price of the option and T is the time of maturity of the option
Using no arbitrage principle, Black-Scholes derived the partial differential equation

(PDE) which is given by

∂Ct

∂t
+ rSt

∂Ct

∂St
+

1

2
σ2S2

t

∂2Ct

∂2St
− rSt = 0.

Black and Scholes [21] calculated the above expectation by solving the PDE for Ct

and is known as the famous Black-Scholes option pricing formula.
The Black-Scholes option price formulae for European call and put options are given

respectively by

Ct = E[e−r(T−t)(ST −K)+|Ft] = StΦ(d1)−Ke−r(T−t)Φ(d2),

Pt = E[e−r(T−t)(K − ST )
+|Ft] = Ke−r(T−t)Φ(−d2)− StΦ(−d1)

where

d1 :=
log

(
S
K

)
+ (r + σ2

2 )(T − t)

σ
√
T − t

, d2 :=
log

(
S
K

)
+ (r − σ2

2 )(T − t)

σ
√
T − t

= d1 − σ
√
T − t

and Φ is the cummulative distribution of standard normal distribution.
In a risk neutral world, where all expectations are calculated under the risk-neutral

measure or the martingale measure, the stock price St at time t follows the following
linear Itô stochastic differential equation, known as the Black-Scholes model

dSt = rStdt+ σStdWt, t ≥ 0

where {Wt}t≥0 is a standard Brownian motion, r is the risk-free interest rate and σ is
the volatility. A simple application of Itô’s formula to logSt provides the exact solution
of the equation given by

St = S0 exp{(r −
1

2
σ2)t+ σWt}

where S0 is the initial price of the stock. St is called Geometric Brownian motion.

3
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One can generates the path of the stock price by the exact method and the Euler
method and calculate the price of the European call option at time 0 based on both
the methods.

In the Black-Scholes model, the interest rate r and the volatility σ are constant.
In practice, both interest rates and the volatility are stochastic processes. First, we
consider stochastic interest rate, which is known as short rate. The Vasicek model for
short rate is given by

drt = a(b− rt)dt+ σdWt, t ≥ 0.

The price of a zero coupon bond at time t maturing at time T is given by

P (t, T ) = A(t, T )e−B(t,T )r(t)

where

B(t, T ) :=
1− e−a(T−t)

a
, A(t, T ) := exp

(
(B(t, T )− T + t)(a2b− σ2/2)

a2
− σ2B(t, T )2

4a

)
.

The interest rate derivative, European call option is given by

C = LP (0, s)Φ(h)−KP (0, T )Φ(h− σp)

where L is the bond principal, s is the bond maturity, T is the option maturity, K is
the strike price,

h :=
1

σP
ln

LP (0, s)

P (0, T )K
+

σP
2
, where σP :=

σ

a
(1− e−a(s−T ))

√
1− e−2aT

2a
.

When a = 0, σP = σ(s−T )
√
T . Parameter estimation in Vasicek model is extensively

studied in Bishwal [8].
The drawback of the Vasicek model is that interest rate can be negative since the

transition density of the process is normal. Next, we consider a positive interest rate
model which also serves as stochastic volatility model. Let (Ω,F , {Ft}t≥0, P ) be a
stochastic basis on which is defined the Cox-Ingersoll-Ross process {σ2

t } satisfying the
Itô stochastic differential equation

dσ2
t = (1 + 2θ σ2

t ) dt+ 2σt dWt, t ≥ 0,

where {Wt}t≥0 is a standard Wiener process with the filtration {Ft}t≥0 and consider
the classical direct estimation problem where θ < 0 is the unknown parameter to
be estimated on the basis of discrete observations of the process {σ2

t }t≥0 at times
0 = t0 < t1 < · · · tn = T with ti − ti−1 = T

n = ∆, i = 1, 2 · · · , n. For our asymptotic
framework, we consider two types of data: 1) ∆ → 0, n → ∞ (high frequency case),
2) ∆ fixed, n → ∞ (low frequency case).

For the moment, assume that we have a continuous realization {σ2
t , 0 ≤ t ≤ T}

which is denoted by σ2T
0 . Let P

T
θ be the measure generated on the space (CT , BT ) of

continuous functions on [0, T ] with the associated Borel σ-algebra BT generated under
the supremum norm by the process V T

0 and let P T
0 be the standard Wiener measure.

4
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It is well known that when θ is the true value of the parameter P T
θ is absolutely

continuous with respect to P T
0 and the Radon-Nikodym derivative (likelihood) of P T

θ

with respect to P T
0 based on σ2T

0 is given by

LT (θ) :=
dP T

θ

dP T
0

(σ2T
0 ) = exp

{
θ

∫ T

0
dσ2

t −
θ2

2

∫ T

0
σ2
t dt

}
.

Consider the score function, the derivative of the log-likelihood function, which is given
by

γT (θ) :=

∫ T

0
dσ2

t − θ

∫ T

0
σ2
t dt.

A solution of the estimating equation γT (θ) = 0 provides the maximum likelihood
estimate (MLE)

θ̂T :=
σ2
T − σ2

0 − T/2∫ T
0 σ2

t dt
.

The minimum contrast estimate (MCE) is given by

θ̃T := − T

2
∫ T
0 σ2

t dt
.

Note that the volatility which is given by the CIR process is not observed.
Consider the Heston stochastic volatility model

dSt = µ St dt+
√

Xt St dWt, dXt = (1 + 2θ Xt) dt+ 2
√

Xt dZt

where {Wt} is a standard Brownian motion independent of another standard Brownian

motion {Zt} and θ < 0. The integrated volatility is given by IT :=
∫ T
0 Xtdt. Denote

st = lnSt, ∆s2ti−1
:= (sti − sti−1

)2. The realized volatility is defined as

Rn,T :=

n∑
i=1

∆s2ti−1
.

It is well known that P-lim
n→∞

Rn,T = IT .

Thus the realized volatility estimates the integrated volatility. Bishwal [16] obtained
several higher order new estimators of integrated volatility using kernel method.

Note that the volatility which is given by the CIR process is not observed. In the
following, we obtain nonparametric estimators of the minimum contrast estimator of
the mean reversion parameter in the Heston model using approximations to θ̃T .

Hence from the definition of MCE, the approximate minimum contrast estimate
(AMCE) of θ would be

θ̃n,T := − T

2Rn,T
.

5
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The following characteristic function of IT is closely associated with Levy’s stochastic
area formula and is well known from Brownian motion literature and also from the
work of Cox, Ingersoll and Ross [26]. Consider the special CIR model

dXt = (1 + 2θXt) dt+ 2
√
Xt dWt, t ≥ 0.

Let φT (u) := E exp(iuIT ), u ∈ R be the characteristic function of IT . Then

E exp(iuIT ) = exp

(
2iu

2θ + γ coth γT
2

)[
cosh

γT

2
+

2θ

γ
sinh

γT

2

]−1

where γ := (4θ2 − 2iu)1/2 and we choose the principal branch of the square root.
Consider the general CIR model

dXt = (a− bXt)dt+
√

2σXtdWt

where X0 = x > 0, a > 0, b ∈ R, σ > 0.

Let JT :=
∫ T
0 X−1

t dt be the integrated inverse volatility. The bond price is the
moment generating function of IT while the maximum likelihood estimators (MLEs)
of the parameters (a, b) are functions of XT , IT and JT . The joint Laplace transform
of (XT , IT ) is given by

E exp(−uXT − vIT ) =

(
2ρe(b−ρ)T/2

2σu(1− e−ρT ) + (ρ− b)e−ρT + (ρ+ b)

)a/σ

× exp

(
u((ρ+ b)e−ρT + (ρ− b) + 2v(1− e−ρT )

2σu(1− e−ρT ) + (ρ− b)e−ρT + (ρ+ b)

)

where ρ =:
√
b2 + 4σv.

Finally,

E exp(−uJT )

=
Γ(k + ν

2 + 1
2)

Γ(ν + 1)

(x
α

)−k
β

ν

2
+ 1

2 exp

(
b

2σ

[
at− 2x

ebt − 1

])
1F1(k +

ν

2
+

1

2
, ν + 1, β)

where

k =:
a

2σ
, α =:

bebt

σ(ebt − 1)
, β :=

bx

σ(ebt − 1)
, ν =:

1

σ

√
(α− σ)2 + 4uσ

and 1F1 is Kummer’s confluent hypergeometric function. See Ben Alaya and Kebaier
[4].

For the CIR model

dXt = a(b−Xt)dt+ σ
√

XtdWt

the price at time t of a zero-coupon bond that pays $1 at time T is given by

P (t, T ) = EQ

(
e−

∫ T

t
Xtdt

)
= A(t, T )e−B(t,T )Xt

6
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where

B(t, T ) :=
2(eγ(T−t)−1)

(γ + a)(eγ(T−t)−1) + 2γ
, A(t, T ) :=

(
2γe(a+γ)(T−t)/2

(γ + a)(eγ(T−t)−1) + 2γ

)2ab/σ2

where γ =
√
a2 + 2σ2 and Q is the risk-neutral measure.

The European call option is given by

Ct = P (t, s)χ2

(
2
log(A(t, s)/K)

B(T, s)
[φ+ ψ +B(T, s)];

4ab

σ2
,

2φ2Xte
γ(T−t)

φ+ ψ +B(T, s)

)

−KP (t, T )χ2

(
2
log(A(t, s)/K)

B(T, s)
[φ+ ψ];

4ab

σ2
,
2φ2Xte

γ(T−t)

φ+ ψ

)

where

φ :=
2γ

σ2(eγ(T−t)−1)
, ψ :=

a+ γ

σ2

and χ2(x; d, λ) is the noncentral chi-square distribution with d degrees of freedom and
noncentrality parameter λ.

Next consider the Heston stochastic volatility model, see Heston [37]:

dSt = µ St dt+
√

Xt St dWt, dXt = (1 + 2θ Xt) dt+ 2
√

Xt dZt, t ≥ 0

where {Wt}t≥0 is a standard Brownian motion independent of another standard Brow-

nian motion {Zt}t≥0 and θ < 0. The integrated volatility is given by IT :=
∫ T
0 Xtdt.

Integrated volatility has to be estimated on the basis of discrete observations of the
price process {St} at times 0 = t0 < t1 < · · · tn = T with ti − ti−1 =

T
n , i = 1, 2 · · · , n.

Let st = logSt be the log-price process. Then

dst = (µ− 1

2
Xt)dt+

√
Xt dWt

Thus the drift term depends on the volatility.
Consider the Heston model with correlated noises: Under the real world measure

P , we have

dSt = µStdt+
√

StdW
1
t , dVt = κ(θ − Vt)dt+ σ

√
VtdW

2
t , dW 1

t dW
2
t = ρdt.

Under the risk neutral measure Q, we have

dSt = rStdt+
√

StdW̃
1
t , dVt = κ∗(θ∗ − Vt)dt+ σ

√
VtdW̃

2
t , dW̃ 1

t dW̃
2
t = ρdt

where

κ∗ = κ+ λ, θ∗ =
κθ

κ+ λ
, dW̃ 1

t = dW 1
t + θtdt, dW̃ 2

t = dW 2
t + k

√
Vtdt

7
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and the Radon-Nikodym derivative is given by

dQ

dP
= exp

{
−1

2

∫ t

0
(θ2s + k2Vs)ds−

∫ t

0
θsdW

1
s −

∫ t

0
k
√

VsdW
2
s

}

where θt = (µ− r)/
√
Vt. The characteristic function of sT under Q is given by

ψT (u) = EQ(e
isTu) = A(u, T )eB(u,T )

where

A(u, T ) := eiu(s0+rT ),

B(u, T ) :=
−(u2 + iu)(1− eγT )V0

2γ − (γ − (κ− ρσui)(1− eγT )

−κθ

σ2

[
2 log

(
2γ − (γ − κ− ρσui)(1− eγT )

2γ

)
+(γ − κ− ρσui)T ]

and γ =:
√

(κ− ρσui)2 + (u2 + iu).

Option price is defined as ET
t [e

−r(T−t)H(T )] where H(T ) is the payoff at time T
and the expectation is under the risk neutral measure. The call option with strike
price K is given by

C̃(St, Vt, t, T ) = StP1 −Ke−r(T−t)P2

where for j = 1, 2,

Pj(x, Vt, T,K) :=
1

2
+

1

π

∫ ∞

0
Re

(
e−iu lnKfj(x, Vt, T, u)

iu

)
du,

x = lnSt, fj(x, Vt, T, u) := exp{C(T − t, u) +D(T − t, u)Vt + iux},

C(T − t, u) := rui(T − t) +
a

σ2

[
(bj − ρσui+ d)(T − t)− 2 ln

(
1− ged(T−t)

1− g

)]
,

D(T − t, u) :=
bj − ρσui+ d

σ2

(
1− ed(T−t)

1− ged(T−t)

)
,

g :=
bj − ρσui+ d

bj − ρσui− d
, d :=

√
(ρσui− bj)2 − σ2(2νjui− u2)

and

ν1 =
1

2
, ν2 = −1

2
, a = κθ, b1 = κ+ λ− ρσ, b2 = κ+ λ.

8
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Carr and Madan [25] used fast Fourier transform (FFT) to evaluate the integral in
this option price formula. On can also use numerical quadrature, like adaptive Simp-
son’s rule to evaluate the integral. Then matlab program can be used to calculate the
option price. Alternatively, one can calculate the option price by using the Monte Carlo
method after using second order discretization of the Heston model, see Glasserman
[35], page 356-357.

We study parameter estimation in Heston Model

dSt = rStdt+
√

VtStdW
1
t , dVt = θVtdt+

√
VtdW

2
t , V0 = ξ

where W 1
t and W 2

t are independent Brownian motions. Here St denotes the stock price
and Vt denotes the volatility. We estimate θ based on the observations St1 , St2 , · · · , Stn .
Observe that

St = S0 exp

{
rt− 1

2

∫ t

0
Vsds+

∫ t

0

√
VsdWs

}
.

Introduce the process st defined as st := log St

S0
. The modified observation st is the

solution of

dst = (r − 1

2
Vt)dt+

√
VtdW

1
t , s0 = 0.

Hence

s2t − 2

∫ t

0
sudsu =

∫ t

0
Vudu and

d

dt

(
s2t − 2

∫ t

0
sudsu

)
= Vt − V0.

If {Vt, 0 ≤ t ≤ T} were observed, then the MLE of θ would have been

θ̂T =
VT − V0∫ T
0 Vudu

.

Based on {st, 0 ≤ t ≤ T}, the MLE is given by

θ̂T =
d
dT (s

2
T − 2

∫ T
0 sudsu)

s2T − 2
∫ T
0 sudsu

.

We have discrete data st1 , st2 , · · · , stn = sT . The approximate MLE is given by

θ̂n,T =

∑n
i=1(sti − sti−1

)2

[s2T − 2
∑n

i=1 sti−1
(sti − sti−1

)]∆
.

Extending the Sharpe [53]’s CAPM model, Fama and French [31, 32] studied three
factor model for asset price to describe stock returns, which won all three of them Nobel
prizes for their work. The three factors are 1) market risk, 2) the outperformance of
small versus big companies and 3) the outperformance of high book/market versus
low book/market. This model is popularly known as Fama-French model. In the last
decade, Fama and French [33] introduced a five factor model for stock returns by

9
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extending the three-factor model and adding two more factors which captures the
size, value, profitability and investment.

A real factor parsimonious asset price model should be of the following hybrid
type with 5 factors and 15 parameters. We consider the hybrid stochastic volatility,
stochastic interest rate, stochastic leverage and stochastic elasticity model under the
risk neutral measure which is given by

dSt = Xtdt+
√

Vt−StdWt + ρλtdLτλt
, dVt = −λVtdt+ υλt−dL

H
τλt

,

dXt = α(β −Xt)dt+ σXγt

t dWH
t , dρt = ((2ζ − η)− ηρt)dt+ θ

√
(1 + ρt)(1− ρt)dZt,

dξt = κ(µ− ξt)dt+ ς
√

ξtdBt, dγt = �(ψ − δ))dt+
√
χdMt, dτt = ξt−dt

where Lt is a Levy process, LH
t is a fractional Levy process (see Bishwal [13, 20]),

WH is a subfractional Brownian motion, Bt, Zt and Mt are standard Brownian mo-
tions. Here St is the asset price which a geometric jump-diffusion, Vt is the stochastic
volatility which is a Levy Ornstein-Uhlenbeck process, Xt is the stochastic interest
rate which is a sub-fractional Chan-Karloyi-Longstaff-Sanders (CKLS) process, ρt is
the stochastic leverage Jacobi (Beta) process, ξt is a volatility modulation (stochastic
time change) of the driving Levy subordinator which is a Cox-Ingersoll-Ross (CIR)
process, γt is the stochastic elasticity models which is another CIR process, and all the
15 parameters λ, α, β, σ, ξ, η, θ, κ, µ, ς,�, ψ, δ, χ,H are positive. Estimating all the 15
parameters based on asset price and interest rate data is a challenging problem. We
partially solve this problem by estimating the parameters of the unobserved volatility
process based on asset price data.

3. Robust Estimation in Inverse-Gaussian-Ornstein-Uhlenbeck Stochastic
Volatility Model

We consider the SDEs

dYt = (µ+ βXt)dt+
√

XtdWt + ρdZθt, dXt = −θXtdt+ dZθt

where Zt is a Levy process independent of X0 with L(X0) = IG(δ, γ). We suppose
that δ and γ are known. Here θ > 0 and ρ < 1.

When the process Z is inverse-Gaussian, the model is IGOU process. In IGOU
model, calculation of conditional cummulants of the integrated volatility conditioned
on the initial value is enough to be able to compute European style options.

Note that the cumulative process or the integrated process It =
∫ t
0 Xudu has long

range dependence or long memory, see Barndorff-Neilsen and Shephard [1].
The cumulant functions of IGOU process are given by

k(u) = logE[e−uZ(1)] = −uδγ−1(1 + 2uγ−2)−1/2,

k′(u) = logE(e−uXt) = δγ − δγ(1 + 2uγ−2)1/2, u ∈ R.

10
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The process Z is the sum of two independent Levy processes Z = Z(1) + Z(2)

where L(X0) = IG(δ/2, γ) and Z(2) is a compound Poisson process given by Z(2) =

γ−2
∑Nt

j=1 uj with N being a Poisson process with intensity δγ/2 and uj is a sequence

of independent and identically χ2
1-distributed random variables independent of N , see

Barndorff-Neilsen and Shephard [1].
The processes Z and X have infinitely many jumps in any finite time interval,

hence they are infinite activity processes. Invariant distribution is Generalized Inverse
Gaussian (GIG):

L(X0) = L(Xt) = GIG(λ, δ,
√

α2 − β2).

Mixture distribution is Generalized Hyperbolic (GH):

L(Yt) = GH(θ,
α√
t
,
β√
t
,
√
tδ, µt), L(Yt+1 − Yt) = GH(λ, α, β, δ, µ).

Recall that the density function of the Generalized Hyperbolic (GH) distribution is
given by

dGH(θ,α,β,δ,µ)(x) =
(α2 − β2)

θ

2

√
2παθ− 1

2 δθKθ(δ
√
α)

(δ2+(x−µ)2)(θ−
1

2
)/2eβ(x−µ)Kθ− 1

2
(α

√
δ2 + (x− µ)2)

where Kν denotes the modified Bessel function of third kind with index ν. When
θ = −1

2 , Generalized Inverse Gaussian (GIG) becomes Inverse Gaussian IG(δ, γ) dis-
tribution.

First we study the LAD estimators in the stable OU case for small ∆. Consider the
model

dXt = −θXtdt+ dZt, t ≥ 0

where {Zt}t≥0 is a Levy process independent of X0. The Least Absolute Deviation
(LAD) estimator is robust to “outlying data”. The LAD estimation has a long history
and is one of popular estimation procedure robust to outlers. The LAD estimation is
based on the Laplacian L1- loss while the LSE is on the Laussian L2-loss. We refer
to Portnoy and Koenker [52], Knight [41] and Koenker [42] as well as the references
therein for a detailed account and historical background on LAD estimation. For time
series literature, see Davis and Dunsmuir [27] and Davis, Knight and Liu [28].

The least absolute deviation (LAD) estimator is defined as the minimizer θ̂n of the
contrast function θ →

∑n
i=1 |Xti − e−θ∆Xti−1

|. For fixed T , asymptotic normality of

θ̂n is achieved at the rate n1/β−1/2 where β stands for the activity index of the driving
Levy process, also known as the Blumenthal-Getoor [22] activity index defined as

β = inf

{
r > 0 :

∫

|z|≤1
|z|rν(dz) < ∞

}

which is the degree of small-jump fluctuations.
Now consider another least absolute deviation (LAD) estimator which is defined as

the minimizer θ̃n of the contrast function θ →
∑n

i=1 |Xti + θXti−1
∆|.

11
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Under infill and large time sampling design, that is when ∆ → 0 and n∆ → ∞,
asymptotic normality of θ̃n is achieved at the rate

√
n∆1−1/β where β stands for the

activity index of the driving Levy process. Note that
√
n∆1−1/β = T 1−1/βn(2−β)/(2β).

This implies that the rate of convergence is determined by the most active part of the
driving Levy process, the presence of a driving Wiener part leads to

√
n∆, which is

familiar in the context of asymptotically efficient estimation of diffusions with com-
pound Poisson jumps, while a pure-jump driving Levy process leads to a faster one.
As a result, when Z is a pure jump Levy process, we have a faster rate of convergence
that the familiar rate

√
n∆. It is interesting to note that rate of convergence is faster

by only changing the type of loss from L2 to L1.
Using self-weighted LAD (SLAD) contrast function θ →

∑n
i=1w(Xti−1

)|Xti +
θXti−1

|, for a bounded continuous weight function w, the rate of convergence can
be improved to the conventional rate

√
n, see Masuda [48] which extended autoregres-

sive process with infinite variance studied in Ling [43]. An example of weight function
is w(x) = exp(−|x|). The unweighted weight function corresponds to the case w ≡ 1.

In the Wiener case, the unweighted SLAD estimator leans to the asymptotic variance
πθ0 where as the asymptotic variance of the exact MLE is 2θ0. Hence the asymptotic
efficiency of the SALD estimator relative to the MLE is 2/π.This is same as asymptotic
relative efficiency for the same the sample median over sample mean in estimating the
mean of i.i.d. normal samples. For the asymptotic normality of SLAD estimator one
does not need the rapidly increasing experimental design n∆2 → 0 which is quite
inevitable while adopting contrast function based on Euler-type approximation. For
SLAD estimator, the weaker condition n∆3 → 0 is sufficient.

The SLAD estimator converges more rapidly than the LSE as soon as
∆ = o(n−1/2(log n)1/(2−β)). The sampling design condition for h is ∆ = n−τ where
τ ∈ (0, 1).

An interval estimator of τ is

β

2(2β − 1)
< τ <

β

2β − 1
, if β > 1, and

β

2(2β − 1)
< τ < 1, if β ∈ (2/3, 1).

An example of infill interval is h = n−3/5.
Next we consider the SDEs

dYt = (µ+ βXt)dt+
√

XtdWt + ρdZλt, dXt = −θXtdt+ dZλt

where Zt is a Levy process independent of X0 and L(X0) = IG(δ, γ). We suppose that
δ and γ are known and we are interested in estimating ϑ0 = (θ, ρ), where θ > 0 and
ρ < 1.

Note that if Xj∆, 1 ≤ j ≤ n were observed, then

θn := − 1

∆
ln

(
min

1≤j≤n

Xj∆

X(j−1)∆

)

is a weakly consistent estimator of λ as n → ∞ as showed by Jongbloed et al. [39]. In
our case, Xj∆, 1 ≤ j ≤ n are unobserved.

We can estimate the state process X by X̂ given by the recursion

X̂ti = e−θ∆X̂ti−1
+ Zti − Zti−1

.

12
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Then we estimate θ by

θ̌n := − 1

∆
ln

(
min

1≤j≤n

X̂j∆

X̂(j−1)∆

)

In order to construct the estimating functions, we use the first and second cummu-
lants which are given respectively by

κ(1)y1
= λρ∆κ

(1)
IG, κ(2)y1

= ∆κ
(1)
IG + 2λρ2∆κ

(2)
IG.

Inverting these cummulants and replacing the cummulants by their sample quantities,
we obtain the explicit the moment estimators of ρ and λ.

The moment estimators of ρ and λ are given by

ρ̂n :=
γ(γs2y −∆δ)

2ȳ
, θ̂n :=

γȳ

∆δρ̂n

where

s2y :=
1

n

n∑
j=1

(yj − ȳ)2 =
1

n

n∑
j=1

y2j − (ȳ)2, ȳ :=
1

n

n∑
j=1

yj , yj := Yj∆ − Y(j−1)∆.

Let ϑ = (ρ, θ). and ϑ̂n = (ρ̂n, λ̃n). We have the following properties of the estimators
from Masuda [47]:

Proposition 3.1 For fixed ∆ > 0 as n → ∞,

(a) ϑ̂n → ϑ0 a.s. as n → ∞.

(b)
√
n(ϑ̂n − ϑ0) →D N2(0, (2λρ

2∆2δ2γ−4)−2D(ϑ0)) as n → ∞.

where D(ϑ0) is the limiting covariance matrix.

Remark: In the IG-OU stochastic volatility model, for the case of
ρ = −1, γ = 1, δ = 1 the moment estimator is given by θ̂n∆ := −Yn∆−Y0

n∆ .
Thus the parameter λ can be estimated by just the two terminal observations.

The moment estimators are sensitive to outliers since they are based on mean and
standard deviation of the sample data. In order to incorporate outliers and model
misspecifications, we consider robust estimators. The robust estimators of ρ and λ are
given by

ρ̃n :=
γ(γay −∆δ)

2ỹ
, λ̃n :=

γỹ

∆δρ̃n
where ay :=

1

n

n∑
j=1

|yj − ỹ|

13
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is the sample mean absolute deviation from median,

ỹ := median of {yj , 1 ≤ j ≤ n}

which is defined as

ỹ =

{
yk+yk+1

2 : n = 2k
yk+1 : n = 2k + 1

Let ϑ = (ρ, θ). and ϑ̃n = (ρ̃n, θ̃n). We have the following properties of the estima-
tors. By using the standard theory of order statistics( see Theorem 5.9 and 5.21 in
Van der Vaart [55]) and mixing property of the process, along with Glivenko-Cantelli
argument and Delta method, we obtain:

Proposition 3.2 For fixed ∆ > 0 as n → ∞,

(a) ϑ̃n → ϑ0 a.s. as n → ∞.

(b)
√
n(ϑ̃n − ϑ0) →D N2(0,

π

2
(2θρ2∆2δ2γ−4)−2D(ϑ0)) as n → ∞.

where D(ϑ0) is the limiting covariance matrix.

4. Method of Moments Estimation in Gamma-Ornstein-Uhlenbeck
Stochastic Volatility Model

We generalize Ornstein-Uhlenbeck process to include non-normal innovations. First
we study the asymptotic behavior of the ratio estimator of the drift parameter in
Gamma-Ornstein-Uhlenbeck (GOU) volatility process based on observations of the
asset price process. This model captures the stylized facts as it preserves jumps in the
volatility process. We study the behavior of the moment estimators.

Bishwal [14] studied estimation for the discretely observed Ornstein-Uhlenbeck-
Gamma (OUG) process. We note that this is different from Gamma-Ornstein-
Uhlenbeck (GOU) process we study here. OUG process is an Ornstein-Uhlenbeck
process with an additive Brownian noise and gamma noise. GOU process is a pure
jump process. OUG process may be compared with the GAR process.

Recall that the autoregressive gamma (ARG) process can be written as

Xt =

Nt∑
j=1

Uj + εt

where Nt is a Poisson process, Uj are independent and identically distributed Gamma
distributed random variables with shape parameter 1 and scale parameter ct. inde-
pendent of N and εt are gamma distributed random variables with shape parameter
ν and scale parameter ct.

14
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We propose the discretized version of the Heston model as:

yi = µ+
√
xi ξi, xi =

Nt∑
j=1

Ui,j + εi, i ≥ 1

where yi is the return, xi is the volatility, ξi are normally distributed, εi are gamma
distributed, (ξi, εi) has the correlation ρ and Uj are independent χ2

1 distributed.
We consider the special cases when L is an GOU process. L has the GOU density

with parameters δ and γ. The stochastic volatility model has the form

dYt = (µ+ βXt)dt+
√

XtdWt + ρdZt, dXt = −θXtdt+ dZt, t ≥ 0

where {Zt}t≥0 is a Levy process independent of X0. The invariant distribution is
Gamma:

L(X0) = L(Xt) = G(θ, δ,
√

α2 − β2).

Mixture distribution is Variance-Gamma denoted by Qθ:

L(Yt) = VG(θ, α√
t
,
β√
t
,
√
tδ, µt), L(Yt+1 − Yt) = VG(θ, α, β, δ, µ).

Let qt(x, θ) be the density function of Yt and LT (θ) be the corresponding likelihood
function. The contrast function is defined as lT (θ) = − logLT (θ). Minimum contrast
estimator (MCE) is defined as

θ̂T := arg inf
θ
lT (θ).

Asymptotic properties of MCE was studied in Bishwal [6, 10, 15].
Then we consider the Gamma-OU process. Let (Ω,F , {Ft}t≥0, P ) be a stochastic ba-

sis on which is defined the Ornstein-Uhlenbeck process Xt satisfying the Itô stochastic
differential equation

dXt = −θXtdt+ dZt, t ≥ 0,

where {Zt} is a Gamma process with the filtration {Ft}t≥0 and θ > 0 is the unknown
parameter to be estimated on the basis of continuous observation of the process {Yt}
on the time interval [0, T ]. The solution of the above SDE is given by

Xt =

∫ t

−∞
e−θ(t−s)dZs.

This process is stationary. In fact, it can be shown that Xti is a stationary dis-
crete time AR (1) process with autoregression coefficient φ ∈ (0, 1) with the following
representation

Xti = φXti−1
+ εti−1

, i ≥ 1, where φ = e−θ∆, εti−1
=

∫ ti

ti−1

e−θ(ti−u)dZu.

15
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The moment estimators are defined as

θ̂n :=
1
n2

[∑n
i=1(Yi∆ − Y(i−1)∆)

]2
1
n2

∑n
i=1(Yi∆ − Y(i−1)∆)2 − ∆

n

[∑n
i=1(Yi∆ − Y(i−1)∆)

] 2a
3(a+ 1)

b4∆
.

ρ̂n :=
1
n2

∑n
i=1(Yi∆ − Y(i−1)∆)

2 − ∆
n

[∑n
i=1(Yi∆ − Y(i−1)∆)

]
1
n2

[∑n
i=1(Yi∆ − Y(i−1)∆)

] b3∆

2a2(a+ 1)
.

For the exponential AR(1) model, the ratio estimator of θ is defined as

θ̂n := − 1

∆
ln

[
min
1≤i≤n

Xi∆

X(i−1)∆

]
.

This estimator is motivated by the extreme value theory for the correlation pa-
rameter of an AR(1) process whose innovation distribution is positive. See Davis and
McCormick [29]. In the case of exponential AR(1) process, it coincides with the max-
imum likelihood estimator. See Neilsen and Shephard [51].

The weak consistency of the ratio estimator in the LOU process was studied in
Jongbloed et al. [39]. The strong consistency and asymptotic Weibullness was studied
in Brockwell, Davis and Yang [23] in the case of Gamma innovations.

Using the techniques of AR (1) type model with exponential innovations (Davis and
McCormick [29]), we also obtain the following two estimators of the drift θ which are
defined as

θ̌n := − 1

∆
ln

(
min
1≤i≤n

X̂i∆

X̂(i−1)∆

)
, θ̃n := − 1

∆
ln

[ ∑n
i=1 X̂i∆∑n

i=1 X̂(i−1)∆

]

where X̂ is the estimator of X based on observations of Y which could be obtained, for
example, by Kitagawa algorithm. The limit distribution of the first estimator would be
Weibull which can be useful for extreme value theory in finance. Bishwal [17] studied
extreme value theory in finance.

Let ϑ = (ρ, θ) and ϑ̂n = (ρ̂n, θ̂n). By using Theorem 2.2 in Masuda [47] (see also
Theorem 4.1 Van der Vaart [55]), we obtain the strong consistency and asymptotic
normality of the method of moments (MM) estimators:

Proposition 4.1 For fixed ∆ > 0 as n → ∞,

(a) ϑ̂n → ϑ0 a.s. as n → ∞,

(b)
√
n(ϑ̂n − ϑ0) →D N2(0, (I

−1(ϑ0)) as n → ∞.

where I(ϑ0) is the Fisher information matrix.

16
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5. Method of Moments Estimation in Modified Tempered
Stable-Ornstein-Uhlenbeck Stochastic Volatility Model

Masuda and Uehara [50] studied two-step estimation in ergodic Levy driven SDE

dXt = a(θ,Xt)dt+ b(β,Xt−)dZt, t ≥ 0, X0 = x0.

Masuda [49] studied multi-step estimation in stable OU Model:

dXt = −θXtdt+ σdZt, t ≥ 0, X0 = x0.

For the least squares estimator (LSE) of θ, Hu and Long [38] obtained

(
T

log n

)1/β

(θ̃n − θ0) →D 2θ0(βθ0)
−1/β

S′
β

S′′+
β/2

as n → ∞, T → ∞, T/n → 0, T 1+β/nβ log n → 0, T 2β−1n2−2β log n →
∞, T 2−β/2+ρn−1+β/2−ρ → ∞ for some ρ > 0 small enough such that all the conver-
gence conditions are compatible, where S′

β has symmetric stable distribution of order

β, S′′+
β/2 has positive stable distribution of order β/2, and S′

β and S′′+
β/2 are independent

random variables.
Thus the rate at which θ̃n converges to θ0 is ((log n)/T )1/β , which is faster than

T−1/2 in the classical Brownian case. Also, one needs T/n2/3 → 0 in the Brownian
case, here one needs complicated design conditions for the high frequency observation
sampling.

While in Gaussian OU case, for different parts θ > 0, θ < 0 and θ = 0, LAN, LAMN
and LABF hold respectively, in stable case entirely different phenomena occur.

The solution of the SDE is given by

Xt = e−θ(t−s)Xs + σ

∫ t

s
e−θ(t−s)dZu, t > s

Due to the stable integral property,

L
(∫ t

s
e−θ(t−s)dZu

)
= Sβ(κ∆(θ)) where κ∆(θ) =

{
1− e−θ∆

θβ

}1/β

∼ ∆1/β .

For each j ≤ n, the transition probability is given by

L(Xtj |Xtj−1
= x) = δx exp(−θ∆) � Sβ(κ∆(θ)).

LAMN holds for θ ∈ R when T is fixed and

n1/β−1/2(θ̂n − θ) →D MN(0,Γ0(T )
−1).

We study estimation in MTS-OU SV model. The IG-OU model is a special case.

17
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An infinitely divisible distribution is said to be α-modified tampered stable distri-
bution (α-MTS) distribution if its Levy triplet is given by

σ2 = 0,

ν(dx) = C


λ

α+ 1

2

+ Kα+ 1

2
λ+x

xα+
1

2

Ix>0 +
λ
α+ 1

2

+ Kα+ 1

2
λ−x

xα+
1

2

Ix<0


 dx,

γ = µ+ C

(
Γ(12 − α)

2α+
1

2

(λ2α−1
+ − λ2α−1

− )− λ
α− 1

2

+ Kα− 1

2
(λ+) + λ

α− 1

2

− Kα− 1

2
(λ−)

)

where C > 0, λ+, λ− > 0, µ ∈ R, α ∈ (−∞, 1)\{1
2} and Kp(x) is the modi-

fied Bessel function of second kind. We denote the MTS random variable by X ∼
MTS(α,C, λ+, λ−, µ). The Levy measure ν(dx) is called the MTS Levy measure with
parameter (α,C, λ+, λ−).

The MTS distribution is obtained by taking a symmetric α-stable distribution with
α ∈ (0, 1) and multiplying by a Levy measure with

√
|x|λα+ 1

2Kα+ 1

2
(λ|x|) on each half

of the real axis. The measure can be extended to the case α ≤ 0. If α = 1
2 , then γ

may not be defined, so it is removed. The MTS distribution was introduced by Kim,
Rachev and Chung [40].

The tails of the α-MTS distribution are thinner than those of the 2α-stable and
fatter (heavier) than those of the 2α-TS distribution. At the zero neighborhood, all
three have the same asymptotic behavior.

If λ+ > λ−, then the distribution is skewed to the left. If λ+ < λ−, then the
distribution is skewed to the right. If λ+ = λ−, then the distribution is symmetric.

C controls the kurtosis of the distribution. If C increases, the peakedness of the
distribution increases.

As α decreases, the distribution has fatter tails and increased peakedness. The Levy
process corresponding to the MTS distribution has finite activity if α < 0 and infinite
activity if α > 0. It has finite variation if α < 1

2 and infinite variation if α > 1
2 .

With proper choice of C and µ, MTS distribution has zero mean and unit vari-
ance, and the distribution is called standard MTS distribution and denoted X ∼
stdMTS(α, λ+, λ−).

CGMY process proposed in Carr et al. [24] is a tempered stable process. In order to
obtain a closed form solution of the European option price, CGMY used the generalised
Fourier transform of the distribution of the stock price under the assumption of Markov
property.

The stochastic volatility model is given by

dYt = (µ+ βXt) dt+
√

Xt dWt + ρ dZt, t ≥ 0

dXt = −θ Xt dt + dZt, t ≥ 0

where µ is the drift parameter, β is the risk premium, θ > 0 is the drift of the volatility
and Zt is a MTS process.

We estimate θ from the observations of {Yt} at the time points tk = k∆, k =
0, 1, 2, . . . , n, ∆ > 0. Define

cm(Z) :=
dm

dum
log φTS(u)|u=0

18



Parameter Estimation in Levy Driven Stochastic Volatility Models 75Journal of Econometrics and Statistics Jaya P. N. Bishwal

For the tempered stable distribution TS(b, δ, γ) where 0 < b < 1, δ > 0, γ ≥ 0, the
m-th cummulant is given by

cm(Z) = −δ(−2)mγ(b−m)/bb(b− 1) . . . (b− (m− 1))

for γ > 0. When γ = 0, it is positive b-stable distribution for which the moments of
only order k < b exist. For b = 1/2, TS distribution reduces to IG distribution.

The infinite divisibility of this distribution allows one to construct the corresponding
Levy process. A Levy process Z = (Zt)t≥0 is said to be a tempered stable process if Z1

follows a tempered stable distribution. The tempered stable process is of finite activity
if α < 0 and infinite activity if 0 < α < 2. The tempered stable process is of finite
variation if 0 < α < 1 and infinite variation if 1 < α < 2.

The MTS-GARCH model is given by

log
St

St−1
= rt − dt + λtσt − g(σt;α, λ+, λ−) + σtεt,

σ2
t = (α0 + α1σ

2
t−1ε

2
t−1 + β1σ

2
t−1) ∧ ρ, ε0 = 0

where α0, α1, β1 ≥ 0, α1 + β1 < 1, 0 < ρ < λ2
+, εt ∼ stdMTS(α, λ+, λ−), rt is the

risk-free rate, dt is the dividend rate, λt is the market price of risk, g is the character-
istic exponent of the Laplace transform for the distribution stdMTS(α, λ+, λ−), i.e.,
g(x;α, λ+, λ−) = log(E(exp(xεt)).

The characteristic function of Z is given by

φZ(u) = exp(iuµ+GR(u;α,C, λ+, λ−) +GI(u;α,C, λ+, λ−))

where for u ∈ R,

GR(u;α,C, λ+, λ−)

= 2−
α+3

2

√
πCΓ

(
1− α

2

) [
(λ2

+ + u2)
α

2 − λα
+ + (λ2

− + u2)
α

2 − λα
−
]
,

GI(u;α,C, λ+, λ−)

= iuC2−
α+1

2 Γ

(
1− α

2

)

×
[
λα−1
+ F

(
1,

1− α

2
;
3

2
, ;− u2

λ2
+

)
− λα−1

− F

(
1,

1− α

2
;
3

2
, ;− u2

λ2
−

)]

where F is the hyper-geometric function.
The value of GI for symmetric MTS distribution is always zero.
The m-th cumulant is given by

cm(Z) = µ if m = 1,

cm(Z) = 2m−α+3

2

(
m− 1

2

)
!CΓ

(
m− α

2

)
(λα−m

+ − λα−m
− ) if m = 3, 5, 7, . . .
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cm(Z) = 2−
α+3

2

√
π

(
m!
m
2 !

)
CΓ

(
m− α

2

)
(λα−m

+ + λα−m
− ) if m = 2, 4, 6, . . .

The mean, variance, skewness and excess kurtosis are given by

E(Z) = c1(Z) = µ+ 2−
α+1

2 CΓ

(
1− α

2

)
(λα−1

+ − λα−1
− ),

V (Z) = c2(Z) = 2−
α+1

2

√
πCΓ

(
1− α

2

)
(λα−2

+ + λα−2
− ),

s(Z) =
c3(Z)

c2(Z)3/2
=

2
α+9

4 Γ
(
3−α
2

)
(λα−3

+ − λα−3
− )

π3/4C1/2(Γ(1−α
2 )(λα−2

+ + λα−2
− ))3/2

,

κ(Z) =
c4(Z)

c2(Z)2
=

3 · 2
α+3

2 CΓ
(
2− α

2

)
(λα−4

+ + λα−4
− )

√
πC(Γ(1−α

2 )(λα−2
+ + λα−2

− ))2
.

If α ∈ (0, 2)\{1}, the Levy measure of α-stable, α-TS and α-MTS have the same
asymptotic behavior at the zero neighborhood. However, the tails of the Levy measures
for the α-MTS distribution are thinner than those of α-stable and heavier than those
of α-TS distribution.

The moment estimators when Z is a Gamma process are given by

θ̂n :=
1
n2

[∑n
i=1(Yi∆ − Y(i−1)∆)

]2
1
n2

∑n
i=1(Yi∆ − Y(i−1)∆)2 − ∆

n

[∑n
i=1(Yi∆ − Y(i−1)∆)

] 2a
3(a+ 1)

b4∆
,

ρ̂n :=
1
n2

∑n
i=1(Yi∆ − Y(i−1)∆)

2 − ∆
n

[∑n
i=1(Yi∆ − Y(i−1)∆)

]
1
n2

[∑n
i=1(Yi∆ − Y(i−1)∆)

] b3∆

2a2(a+ 1)
.

For the MTS-OU model, the estimating functions are given by

c1(y1) = λρ∆c1(Z), c2(y1) = ∆c1(Z) + 2λρ2∆c2(Z),

c3(y1) = ∆c1(Z) + 2λρ2∆c2(Z), c4(y1) = ∆c1(Z) + 2λρ2∆c2(Z),

E(y1) = c1(y1) = µ+ 2−
α+1

2 CΓ

(
1− α

2

)
(λα−1

+ − λα−1
− ),

V (y1) = c2(y1) = 2−
α+1

2

√
πCΓ

(
1− α

2

)
(λα−2

+ + λα−2
− ).
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θ̂n :=
1
n2

[∑n
i=1(Yi∆ − Y(i−1)∆)

]2
1
n2

∑n
i=1(Yi∆ − Y(i−1)∆)2 − ∆

n

[∑n
i=1(Yi∆ − Y(i−1)∆)

]

× [2−
α+1

2 CΓ

(
1− α

2

)
(λα−1

+ − λα−1
− )]2[2−

α+1

2

√
πCΓ

(
1− α

2

)
(λα−2

+ + λα−2
− )]2∆−1,

ρ̂n :=
1
n2

∑n
i=1(Yi∆ − Y(i−1)∆)

2 − ∆
n

[∑n
i=1(Yi∆ − Y(i−1)∆)

]
1
n2

[∑n
i=1(Yi∆ − Y(i−1)∆)

]

× [2−
α+1

2 CΓ

(
1− α

2

)
(λα−1

+ − λα−1
− )2−

α+1

2

√
πCΓ

(
1− α

2

)
(λα−2

+ + λα−2
− )]−12−1∆.

Let ϑ = (ρ, θ) and ϑ̂n = (ρ̂n, θ̂n). By using Theorem 2.2 in Masuda [47] (see also
Theorem 4.1 Van der Vaart [55]), we obtain the strong consistency and asymptotic
normality of the MM estimators:

Proposition 5.1 For fixed ∆ > 0 as n → ∞,

(a) ϑ̂n → ϑ0 a.s. as n → ∞,

(b)
√
n(ϑ̂n − ϑ0) →D N2(0, (J

−1(ϑ0)) as n → ∞

where J(ϑ0) Fisher information matrix.

6. Concluding Remarks

Financial return data are far from being Gaussian. We emphasized importance of
non-Gaussian heavy tailed distributions in finance. We reviewed option pricing for
stochastic interest rate and stochastic volatility models. We studied robust estimation
in inverse Gaussian stochastic volatility model. We studied method of moments esti-
mation in Gamma stochastic volatility model and modified tempered stable stochastic
volatility model. The estimators are explicit and depend only on the asset price data.
The estimation the other unknown parameters of the other processes based on asset
price data in the hybrid model remains to be investigated which we would like to
pursue in a future paper.
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